Анализ корреляционной размерности данных ЭЭГ при эпилепсии у детей

Март 2010
Журнал «Нелинейный мир», №3, 2010 г., с. 180-188
Семенова Н.Ю., Захаров В.С.
Н.Ю. Семенова - к.м.н., ст.научн. сотрудник, руководитель отделения функциональной диагностики, НИИ неотложной детской хирургии и травматологии (НИИ НДХиТ)
В.С. Захаров- к.ф.-м.н., доцент, геологический факультет МГУ им. М.В.Ломоносова

Ключевые слова: электроэнцефалограмма (ЭЭГ), абсанс, эпилепсия, динамическая система, детерминированный хаос, фракталы, корреляционная размерность

Определена корреляционная размерность Dc и размерность вложения m по данным ЭЭГ у 10 здоровых детей и 12 детей с эпилепсией; проведен анализ сигналов до, во время и после абсанса; выявлены во время абсанса зоны мозга, для которых записи ЭЭГ имели свойства детерминированного хаоса, в то время как записи ЭЭГ для других зон мозга были сходны с шумом; с помощью анализа данных ЭЭГ выявлены различия в динамических характеристиках здоровых детей и детей с эпилепсией.

Analysis of correlation dimension of EEG data in epilepsy in children

Keywords: electroencephalogram (EEG), absence seizures, epilepsy, dynamic system, deterministic chaos, fractals, correlation dimension

N.Yu. Semenova, V.S. Zakharov

The electroencephalogram (EEG) indicates current of the nervous processes in a brain. EEG is of great importance for analysis of mechanism of brain activity in the norm and a pathology. Special importance EEG has at epilepsy diagnostics.

The purpose of our work is to apply a research technique of nonlinear dynamic systems to detection neurophysiologic patterns according to EEG data for healthy children and children with epilepsy.

On EEG data received at examination healthy children and children with epilepsy, we recovered attractors in a two-dimensional phase space. Results of our analysis show, that for the healthy children in all channels EEG attractors are similar to stochastic system attractors. For the sick children during absence seizures the attractors recovered on tracings of the most of channels, specially frontal and temporal zones, is similar to characteristic of deterministic chaotic system. In cases of registration of the expressed local epileptiform activity on EEG the same regularities for one or two zones of a brain have been discovered.

We calculated correlation dimension Dc and embedding dimension m for 16-channel EEG data from 10 healthy children and 12 patients with epilepsy. The signals were analysed before, during and after the absence seizures. In the absence seizures we could distinguish dynamical regions on the cerebral cortex, one that seemed to exhibit deterministic chaos whereas the other seemed to exhibit noise. The chaotic dynamics that one seems to observe is determined by a small number of variables (m = 5 ? 8) and has low complexity (Dc  4.3). Before and after the seizures no chaos was found. In the EEG of?= 3.5  healthy children no chaotic region was found. The application of non-linear signal analysis revealed the existence of differences in EEG dynamics of healthy children and patients with epilepsy.

The electroencephalogram is a development of the most complicated bioelectrochemical processes descending in a brain. Based on the approaches explained in our job, it is possible to give the following interpreting of the received results. For healthy children (and out of an attack) units of the complex system which generate EEG signal, work largely independently, "separately", that reveal to a great extent the stochasticity which is found at their probe. The epilepsy reveals as some kind of synchronisation of separate units which one in the norm are more independent. During an absence seizure there is still a large synchronisation, determinisation of systems, occurrence of a signal which is closed to the periodic one. In period after absence seizures reverse process of a desynchronization, randomisation of system occurs.

This approach may contribute to the understanding of brain activity and may be useful in clinical diagnosis.

Список литературы:
1.    Андерсен Т.Статистический анализ временных рядов. М.: Мир. 1976.
2.    Гнездицкий В.В.Обратная задача ЭЭГ и клиническая электроэнцефалография. Таганрог: Изд-во ТРТУ. 2002.
3.    Зенков Л.Р.Клиническая электроэнцефалография (с элементами эпилептологии). Таганрог: Изд-во ТРТУ. 1996.
4.    Мандельброт Б. Фрактальная геометрия природы. Москва - Ижевск: Институт компьютерных исследований. 2002.
5.    Меклер А.А. Применение аппарата нелинейного анализа динамических систем для обработки сигналов ЭЭГ // Актуальные проблемы современной математики: учёные записки. 2004. Т. 13. № 2. С. 112-140.
6.    Меклер А.А. Применение аппарата нелинейного анализа динамических систем для обработки сигналов ЭЭГ // Вестник новых медицинских технологий. 2007. Т. 14. № 1. С. 73-77.
7.    Отнес Р., Эноксон Л. Прикладной анализ временных рядов. М.: Мир. 1982.
8.    Семёнова Н.Ю., Захаров В.С. Фрактальный анализ данных ЭЭГ при эпилепсии // Материалы междисциплинарного симпозиума ФиПС-08 «Прикладная синергетика в нанотехнологиях», 17 - 20 ноября 2008, Москва. С. 461-466.
9.    Семёнова Н.Ю., Захаров В.С. Фрактальный анализ и поиск детерминизма в данных ЭЭГ // Труды X Междунар. конф. «Новые информационные технологии в медицине и экологии» IT+ME'2002. Гурзуф, 2002. С. 462-465.
10.    Федер Е. Фракталы. М.: Мир. 1991.
11.    Хакен Г. Принципы работы головного мозга. Синергетический подход к активности мозга, поведению и когнитивной деятельности. М.: ПЭР СЭ. 2001.
12.    Шредер М.Фракталы, хаос, степенные законы. Ижевск: НИЦ «Регулярная и хаотическая динамика». 2001.
13.    Шустер Г.Детерминированный хаос. М.: Мир. 1988.
14.    Babloyantz A.Strange Attractor In the Dynamics of Brain Activity // Complex Systems - Operational Approaches. Ed. H. Haken. Berlin, Springer. 1985. P. 116-123.
15.    Babloyantz A., Destexhe A.Low-dimensional chaos in an instance of epilepsy // Proceedings of the National Academy of Sciences USA. 1986. V.83. P.3513-3517.
16.    Boustani S.E., Destexhe A. Does brain activity stem from high-dimensional chaotic dynamics? Evidence from the human electroencephalogram, cat cerebral cortex and artificial neuronal networks // arXiv. 2009. http://aps.arxiv.org/abs/0904.4217v1.
17.    Feucht M. et al. Nonlinear Dynamics of 3 Hz Spike-and-wave Discharges Recorded During Typical Absence Seizures in Children // Cereberal Cortex. 1998. V. 8. No. 6. P. 524-533.
18.    Le Van Quyen M., Adam C., Baulac M., Martinerie J., Varela F.J. Nonlinear interdependencies of EEG signals in human intracranially recorded temporal lobe seizures // Brain Research. 1998. V. 792. P.24–40.
19.    Le Van Quyen M., Martinerie J., Navarro V., Baulac M., Varela F.J. Characterizing Neurodynamic Changes Before Seizures // Journal of Clinical Neurophysiology. 2001. V. 18. No. 4. P. 191-208.
20.    Nurujjaman M., Narayanan R., Iyengar A.N.S. Comparative study of nonlinear properties of EEG signals of a normal person and an epileptic patient // arXiv. 2007. http://aps.arxiv.org/abs/0709.3683v1.
21.    Osorio I., Harrison M.A.F., Lai Y.-C., Frei M.G. Observations on the Application of the Correlation Dimension and Correlation Integral to the Prediction of Seizures // Journal of Clinical Neurophysiology. 2001. V. 18. No. 3. P. 269-274.
22.    Silva C., Pimentel I.R., Andrade A., Foreid J.P., Ducla-Soares E. Correlation Dimension Maps of EEG from Epileptic Absences // Brain Topography. 1999. V. 11. No. 3. P. 201-209.
23.    Stam C.J. Nonlinear Brain Dynamics. Nova Science. New York. 2006.
24.    Theiler J. On the evidence for low-dimensional chaos in an epileptic electroencephalogram // Physics Letters A. 1995. V. 196. P. 335-341.





Возврат к списку


Интернет-Лаборатория sopdu